

Electrochemistry Chapter 19

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Electrochemical processes are oxidation-reduction reactions in which:

- the energy released by a spontaneous reaction is converted to electricity or
- electrical energy is used to cause a nonspontaneous reaction to occur

$${}^{0}_{2\text{Mg}} (s) + {}^{0}_{2} (g) \longrightarrow {}^{2+2-}_{2\text{MgO}} (s)$$

2Mg \longrightarrow 2Mg²⁺ + 4e⁻ **Oxidation** half-reaction (lose e⁻) O₂ + 4e⁻ \longrightarrow 2O²⁻ **Reduction** half-reaction (gain e⁻)

Oxidation number

The charge the atom would have in a molecule (or an ionic compound) if electrons were completely transferred.

1. Free elements (uncombined state) have an oxidation number of zero.

Na, Be, K, Pb,
$$H_2$$
, O_2 , $P_4 = 0$

2. In monatomic ions, the oxidation number is equal to the charge on the ion.

3. The oxidation number of **oxygen** is **usually** –2. In H_2O_2 and O_2^{2-} it is –1.

- The oxidation number of hydrogen is +1 except when it is bonded to metals in binary compounds. In these cases, its oxidation number is -1.
- 5. Group IA metals are +1, IIA metals are +2 and fluorine is always –1.
- 6. The sum of the oxidation numbers of all the atoms in a molecule or ion is equal to the charge on the molecule or ion.

Oxidation numbers of all the atoms in HCO_3^- ?

 HCO_{3}^{-} O = -2 H = +1 3x(-2) + 1 + ? = -1C = +4

Balancing Redox Equations

The oxidation of Fe²⁺ to Fe³⁺ by $Cr_2O_7^{2-}$ in acid solution?

1. Write the unbalanced equation for the reaction ion ionic form.

$$Fe^{2+} + Cr_2O_7^{2-} \longrightarrow Fe^{3+} + Cr^{3+}$$

2. Separate the equation into two half-reactions.

Oxidation:
$$Fe^{2+} \longrightarrow Fe^{3+}$$

Reduction: $Cr_2O_7^{2-} \longrightarrow Cr^{3+}$

3. Balance the atoms other than O and H in each half-reaction.

$$Cr_2O_7^{2-} \longrightarrow 2Cr^{3+}$$

Balancing Redox Equations

 For reactions in acid, add H₂O to balance O atoms and H⁺ to balance H atoms.

 $Cr_2O_7^{2-} \longrightarrow 2Cr^{3+} + 7H_2O$ $14H^+ + Cr_2O_7^{2-} \longrightarrow 2Cr^{3+} + 7H_2O$

5. Add electrons to one side of each half-reaction to balance the charges on the half-reaction.

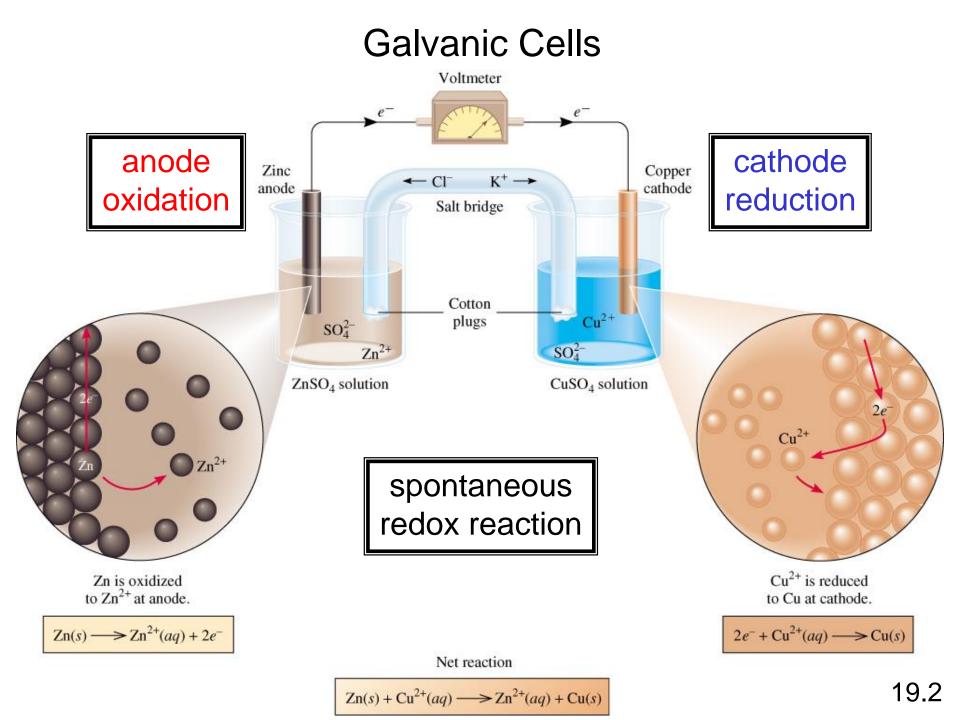
$$Fe^{2+} \longrightarrow Fe^{3+} + \underbrace{1e^{-}}_{6e^{-}} + 14H^{+} + Cr_2O_7^{2-} \longrightarrow 2Cr^{3+} + 7H_2O$$

 If necessary, equalize the number of electrons in the two halfreactions by multiplying the half-reactions by appropriate coefficients.

$$6Fe^{2+} \longrightarrow 6Fe^{3+} + 6e^{-}$$

 $6e^{-} + 14H^{+} + Cr_2O_7^{2-} \longrightarrow 2Cr^{3+} + 7H_2O$

Balancing Redox Equations

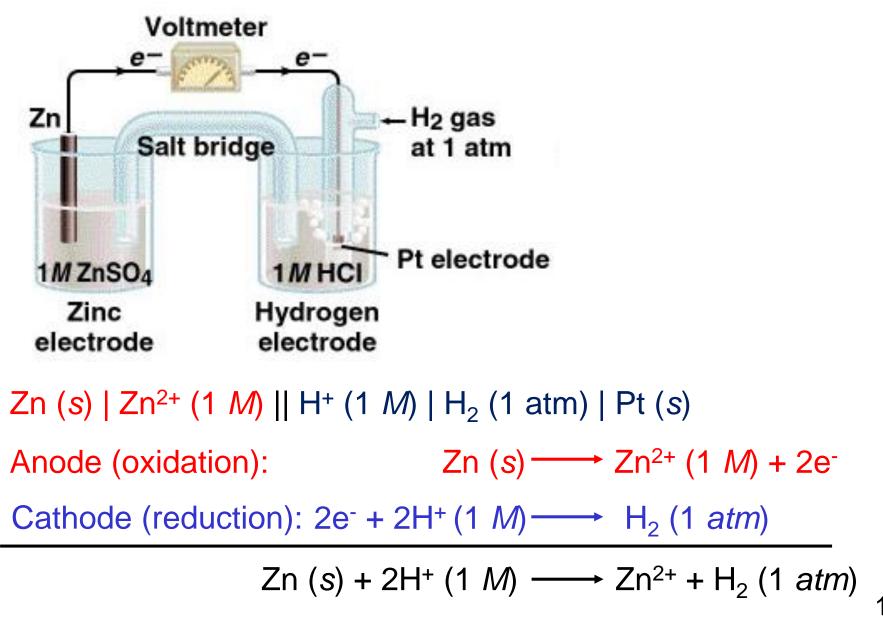

7. Add the two half-reactions together and balance the final equation by inspection. The number of electrons on both sides must cancel.

Oxidation: $6Fe^{2+} \rightarrow 6Fe^{3+} + 6e^{-1}$ Reduction: $6e^{-1} + 14H^{+} + Cr_2O_7^{2-} \rightarrow 2Cr^{3+} + 7H_2O^{-1}$ $14H^{+} + Cr_2O_7^{2-} + 6Fe^{2+} \rightarrow 6Fe^{3+} + 2Cr^{3+} + 7H_2O^{-1}$

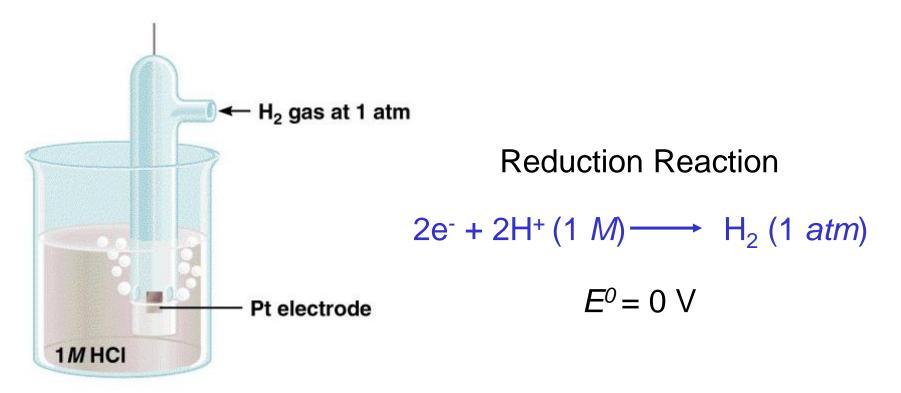
8. Verify that the number of atoms and the charges are balanced.

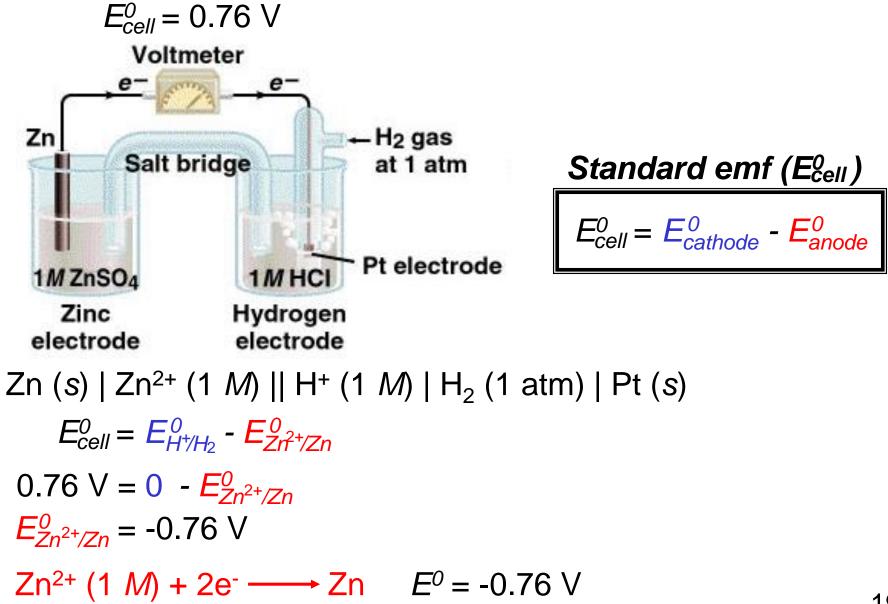
14x1 - 2 + 6x2 = 24 = 6x3 + 2x3

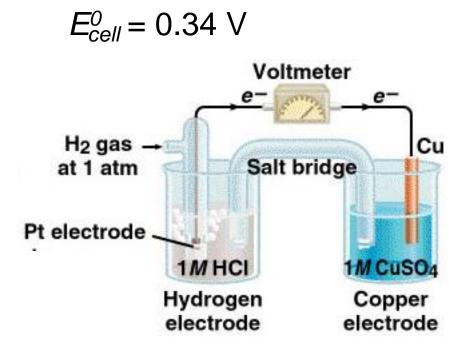
 For reactions in basic solutions, add OH⁻ to both sides of the equation for every H⁺ that appears in the final equation.


Galvanic Cells

The difference in electrical potential between the anode and cathode is called:


- cell voltage
- electromotive force (emf)
- cell potential


Cell Diagram $Zn (s) + Cu^{2+} (aq) \longrightarrow Cu (s) + Zn^{2+} (aq)$ $[Cu^{2+}] = 1 M \& [Zn^{2+}] = 1 M$ $Zn (s) | Zn^{2+} (1 M) || Cu^{2+} (1 M) | Cu (s)$ anode cathode



Standard reduction potential (E^{0}) is the voltage associated with a reduction reaction at an electrode when all solutes are 1 M and all gases are at 1 atm.

Standard hydrogen electrode (SHE)

 $E_{cell}^{0} = E_{cathode}^{0} - E_{anode}^{0}$ $E_{cell}^{0} = E_{Cu}^{0} + C_{Cu}^{2} - E_{H}^{0} + C_{H}^{2}$ $0.34 = E_{Cu}^{0} + C_{Cu}^{2} - 0$ $E_{Cu}^{0} + C_{Cu}^{2} + C_{U}^{2} - 0$

Pt (s) | H₂ (1 *atm*) | H⁺ (1 *M*) || Cu²⁺ (1 *M*) | Cu (s) Anode (oxidation): H₂ (1 *atm*) \longrightarrow 2H⁺ (1 *M*) + 2e⁻ Cathode (reduction): 2e⁻ + Cu²⁺ (1 *M*) \longrightarrow Cu (s) H₂ (1 *atm*) + Cu²⁺ (1 *M*) \longrightarrow Cu (s) + 2H⁺ (1 *M*)

Standard Reduction Potentials at 25°C*

+ve

agent

Dxidizing

agent

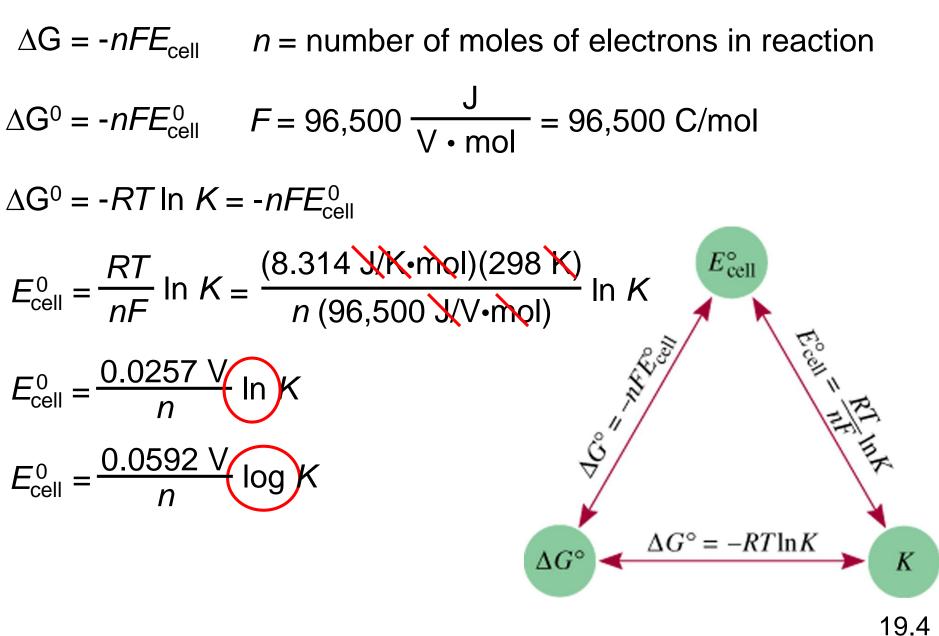
reducing

-ve

	nall-neaction	$E(\mathbf{v})$	
	$F_2(g) + 2e^- \longrightarrow 2F^-(aq)$	+2.87	
	$O_3(g) + 2H^+(aq) + 2e^- \longrightarrow O_2(g) + H_2O$	+2.07	
	$\operatorname{Co}^{3^+}(aq) + e^- \longrightarrow \operatorname{Co}^{2^+}(aq)$	+1.82	
	$H_2O_2(aq) + 2H^+(aq) + 2e^- \longrightarrow 2H_2O$	+1.77	
	$PbO_2(s) + 4H^+(aq) + SO_4^{2-}(aq) + 2e^- \longrightarrow PbSO_4(s) + 2H_2O$	+1.70	
	$\operatorname{Ce}^{4+}(aq) + e^{-} \longrightarrow \operatorname{Ce}^{3+}(aq)$	+1.61	
	$MnO_4^-(aq) + 8H^+(aq) + 5e^- \longrightarrow Mn^{2+}(aq) + 4H_2O$	+1.51	
	$\operatorname{Au}^{3+}(aq) + 3e^{-} \longrightarrow \operatorname{Au}(s)$	+1.50	
	$\operatorname{Cl}_2(g) + 2e^- \longrightarrow 2\operatorname{Cl}^-(aq)$	+1.36	
	$Cr_2O_7^{2-}(aq) + 14H^+(aq) + 6e^- \longrightarrow 2Cr^{3+}(aq) + 7H_2O$	+1.33	
	$MnO_2(s) + 4H^+(aq) + 2e^- \longrightarrow Mn^{2+}(aq) + 2H_2O$	+1.23	
	$O_2(g) + 4H^+(aq) + 4e^- \longrightarrow 2H_2O$	+1.23	
	$\operatorname{Br}_2(l) + 2e^- \longrightarrow 2\operatorname{Br}^-(aq)$	+1.07	
	$NO_3^-(aq) + 4H^+(aq) + 3e^- \longrightarrow NO(g) + 2H_2O$	+0.96	
	$2\text{Hg}^{2+}(aq) + 2e^{-} \longrightarrow \text{Hg}_{2}^{2+}(aq)$	+0.92	
	$\mathrm{Hg}_{2}^{2+}(aq) + 2e^{-} \longrightarrow 2\mathrm{Hg}(l)$	+0.85	
	$Ag^+(aq) + e^- \longrightarrow Ag(s)$	+0.80	
	$\operatorname{Fe}^{3+}(aq) + e^{-} \longrightarrow \operatorname{Fe}^{2+}(aq)$	+0.77	
	$O_2(g) + 2H^+(aq) + 2e^- \longrightarrow H_2O_2(aq)$	+0.68	
	$MnO_4^-(aq) + 2H_2O + 3e^- \longrightarrow MnO_2(s) + 4OH^-(aq)$	+0.59	
gen	$I_2(s) + 2e^- \longrightarrow 2I^-(aq)$	+0.53	ent
a	$O_2(g) + 2H_2O + 4e^- \longrightarrow 4OH^-(aq)$	+0.40	ag
zing	$\operatorname{Cu}^{2+}(aq) + 2e^{-} \longrightarrow \operatorname{Cu}(s)$	+0.34	ing
idi	$\operatorname{AgCl}(s) + e^{-} \longrightarrow \operatorname{Ag}(s) + \operatorname{Cl}^{-}(aq)$	+0.22	duc
Increasing strength as oxidizing agent	$\mathrm{SO}_{2^{+}}^{2^{-}}(aq) + 4\mathrm{H}^{+}(aq) + 2e^{-} \longrightarrow \mathrm{SO}_{2}(g) + 2\mathrm{H}_{2}\mathrm{O}$	+0.20	Increasing strength as reducing agent
1 as	$\operatorname{Cu}^{2+}(aq) + e^{-} \longrightarrow \operatorname{Cu}^{+}(aq)$	+0.15	h as
lgth	$\operatorname{Sn}^{4+}(aq) + 2e^{-} \longrightarrow \operatorname{Sn}^{2+}(aq)$	+0.13	ngtl
trer	$2H^+(aq) + 2e^- \longrightarrow H_2(g)$	0.00	trei
g Sl	$Pb^{2+}(aq) + 2e^{-} \longrightarrow Pb(s)$	-0.13	g s
sin	$\operatorname{Sn}^{2+}(aq) + 2e^{-} \longrightarrow \operatorname{Sn}(s)$ $\operatorname{Ni}^{2+}(aq) + 2e^{-} \longrightarrow \operatorname{Ni}(s)$	-0.14	usin
rea	$\operatorname{Ni}^{2+}(aq) + 2e^{-} \longrightarrow \operatorname{Ni}(s)$	-0.25	Srea
Inc	$\operatorname{Co}^{2^+}(aq) + 2e^- \longrightarrow \operatorname{Co}(s)$ $\operatorname{PbSO}_4(s) + 2e^- \longrightarrow \operatorname{Pb}(s) + \operatorname{SO}_4^{2^-}(aq)$	-0.28	Inc
	$\operatorname{Cd}^{2+}(aq) + 2e^{-} \longrightarrow \operatorname{Cd}(s)$	-0.31 -0.40	
	$\operatorname{Fe}^{2+}(aq) + 2e^{-} \longrightarrow \operatorname{Fe}(s)$	-0.40	
	$\operatorname{Cr}^{3+}(aq) + 3e^{-} \longrightarrow \operatorname{Cr}(s)$	-0.74	
	$\operatorname{Zn}^{2+}(aq) + 2e^{-} \longrightarrow \operatorname{Zn}(s)$	-0.76	
	$2H_2O + 2e^- \longrightarrow H_2(g) + 2OH^-(aq)$	-0.83	
	$Mn^{2+}(aq) + 2e^{-} \longrightarrow Mn(s)$	-1.18	
	$\operatorname{Al}^{3+}(aq) + 3e^{-} \longrightarrow \operatorname{Al}(s)$	-1.66	
	$Be^{2+}(aq) + 2e^{-} \longrightarrow Be(s)$	-1.85	
	$Mg^{2+}(aq) + 2e^{-} \longrightarrow Mg(s)$	-2.37	
	$Na^{+}(aq) + e^{-} \longrightarrow Na(s)$	-2.71	
	$\operatorname{Ca}^{2+}(aq) + 2e^{-} \longrightarrow \operatorname{Ca}(s)$	-2.87	
	$\operatorname{Sr}^{2+}(aq) + 2e^{-} \longrightarrow \operatorname{Sr}(s)$	-2.89	
	$Ba^{2+}(aq) + 2e^{-} \longrightarrow Ba(s)$	-2.90	
	$K^+(aq) + e^- \longrightarrow K(s)$	-2.93	
	$\operatorname{Li}^+(aq) + e^- \longrightarrow \operatorname{Li}(s)$	-3.05	

E⁰ is for the reaction as written

- The more positive *E*⁰ the greater the tendency for the substance to be reduced
- The half-cell reactions are reversible
- Changing the stoichiometric
 coefficients of a half-cell
 reaction *does not* change
 the value of *E*⁰


*For all half-reactions the concentration is 1 *M* for dissolved species and the pressure is 1 atm for gases. These are the standard-state values.

What is the standard emf of an electrochemical cell made of a Cd electrode in a 1.0 M Cd(NO₃)₂ solution and a Cr electrode in a 1.0 M Cr(NO₃)₃ solution?

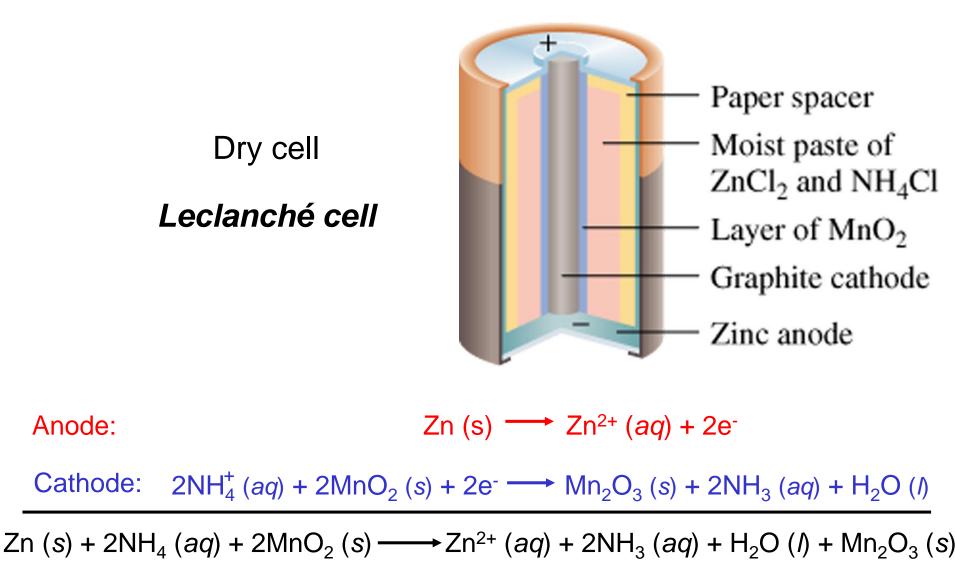
 $Cd^{2+}(aq) + 2e^{-} \longrightarrow Cd(s)$ $E^{0} = -0.40 V$ Cd is the stronger oxidizer Cd will oxidize Cr $Cr^{3+}(aq) + 3e^{-} \longrightarrow Cr(s) \quad E^{0} = -0.74 \text{ V}$ Anode (oxidation): $Cr(s) \longrightarrow Cr^{3+}(1 M) + (3e^{-}) \times 2$ Cathode (reduction): $(2e^{2+} Cd^{2+} (1 M) \longrightarrow Cd (s) \times 3$ $2Cr(s) + 3Cd^{2+}(1 M) \longrightarrow 3Cd(s) + 2Cr^{3+}(1 M)$ $E_{cell}^0 = E_{cathode}^0 - E_{anode}^0$ $E_{cell}^0 = -0.40 - (-0.74)$

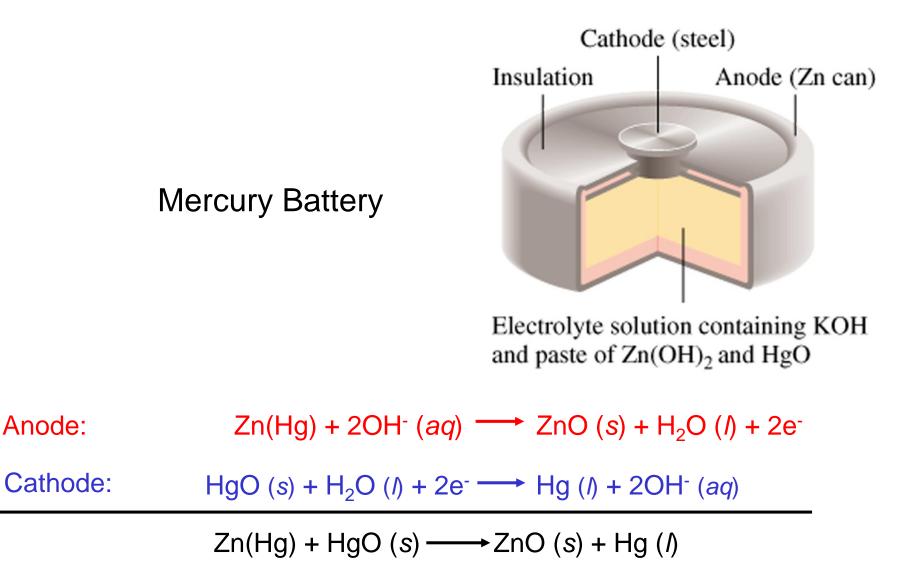
 $E_{cell}^{0} = 0.34 \text{ V}$

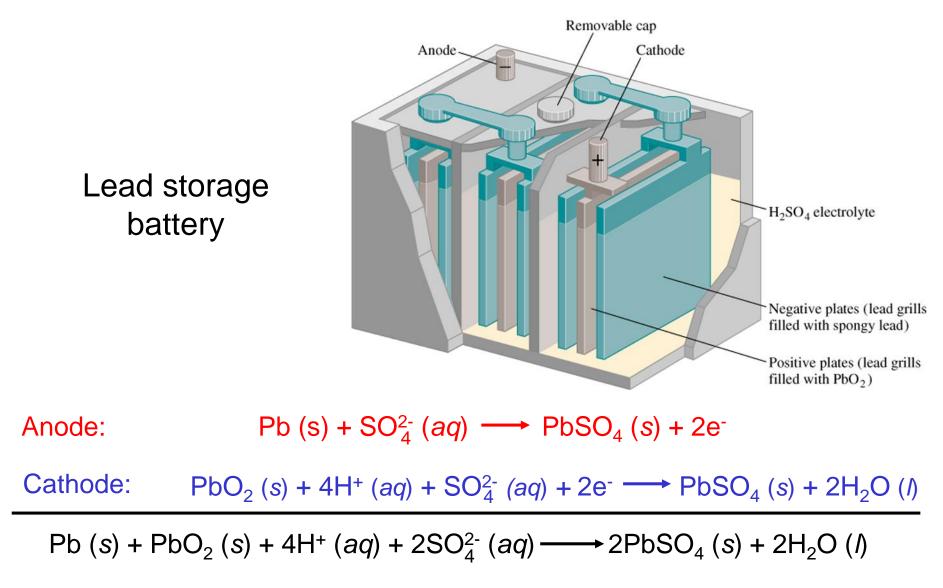
Spontaneity of Redox Reactions

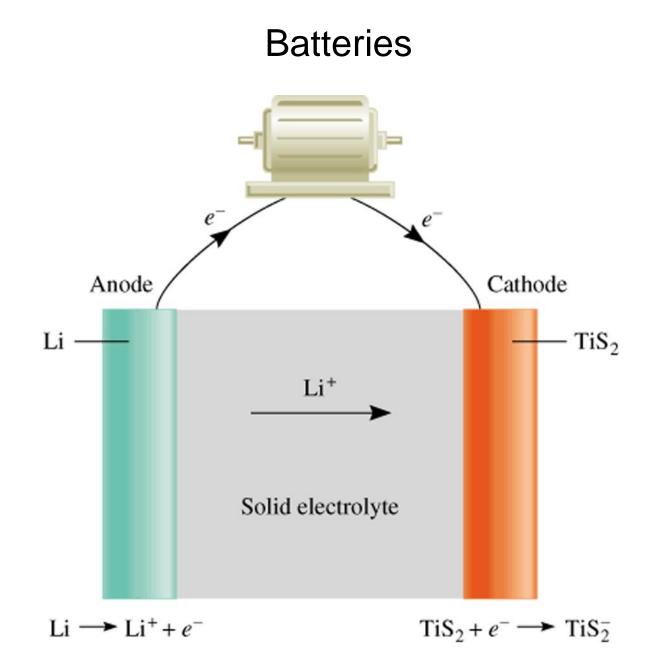
Spontaneity of Redox Reactions

Relationships among ΔG° , K, and E°_{cell}							
ΔG°	к	E _{cell}	Reaction under Standard-State Conditions				
Negative	>1	Positive	Favors formation of products.				
0	=1	0	Reactants and products are equally favored.				
Positive	<1	Negative	Favors formation of reactants.				

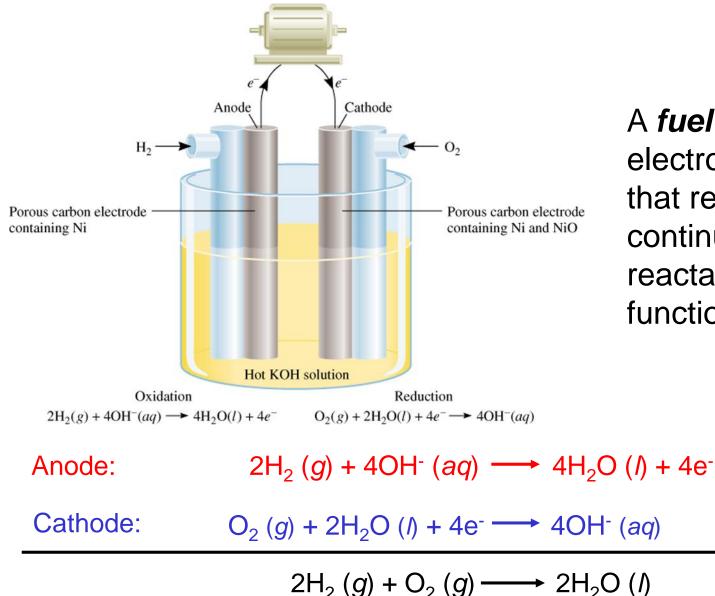

What is the equilibrium constant for the following reaction at 25°C? Fe²⁺ (aq) + 2Ag (s) \rightarrow Fe (s) + 2Ag⁺ (aq) $E_{\rm cell}^0 = \frac{0.0257 \text{ V}}{n} \ln K$ Oxidation: $2Ag \rightarrow 2Ag^+ + 2e^-$ Reduction: $2e^- + Fe^{2+} \rightarrow Fe$ n = 2 $E^{0} = E^{0}_{Fe^{2+}/Fe} - E^{0}_{Aa^{+}/Aa}$ $E^{0} = -0.44 - (0.80)$ $F^0 = -1.24$ V $K = \exp\left|\frac{E_{cell}^{0} \times n}{0.0257 \text{ V}}\right| = \exp\left|\frac{-1.24 \text{ V} \times 2}{0.0257 \text{ V}}\right|$

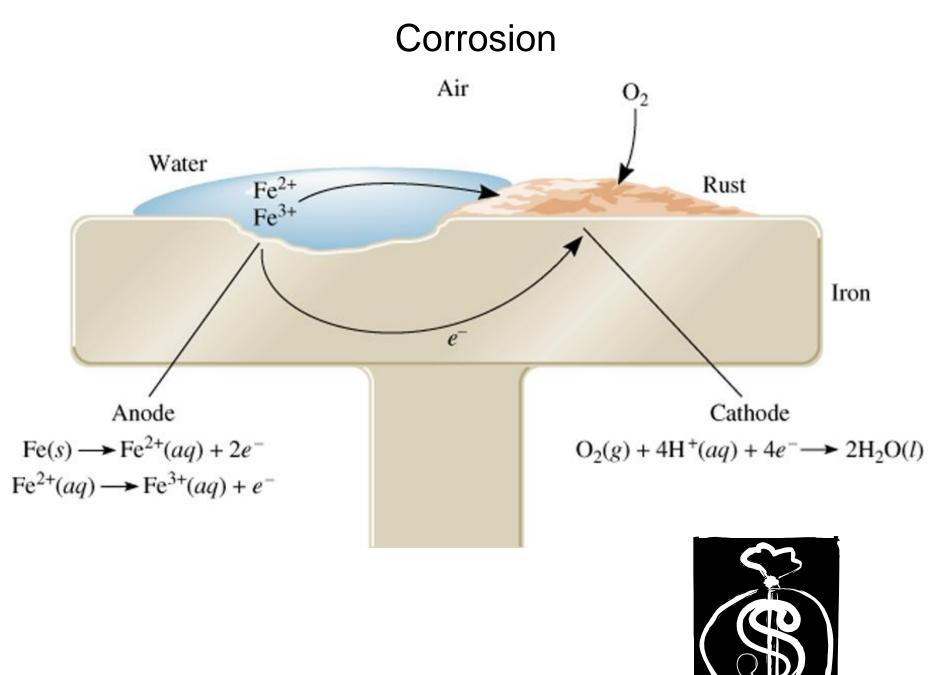

 $K = 1.23 \times 10^{-42}$


The Effect of Concentration on Cell emf $\Delta \mathbf{G} = \Delta \mathbf{G}^{0} + RT \ln \mathbf{Q}$ $\Delta \mathbf{G} = -nFE$ $\Delta \mathbf{G}^{0} = -nFE^{0}$ $-nFE = -nFE^{0} + RT \ln Q$ Nernst equation $E = E^0 - \frac{RT}{nF} \ln Q$ At 298 $E = E^0 - \frac{0.0257 \text{ V}}{n} \ln Q$ $E = E^0 - \frac{0.0592 \text{ V}}{n} \log Q$

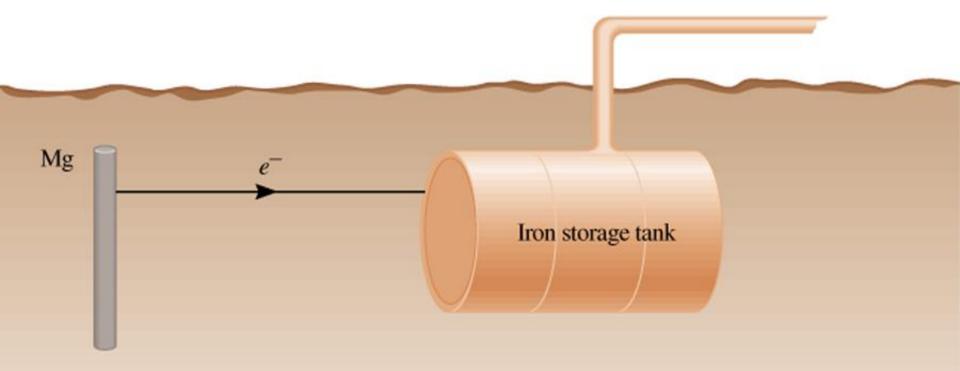

Will the following reaction occur spontaneously at 25°C if $[Fe^{2+}] = 0.60 M \text{ and } [Cd^{2+}] = 0.010 M?$ $Fe^{2+}(aq) + Cd(s) \longrightarrow Fe(s) + Cd^{2+}(aq)$ $Cd \longrightarrow Cd^{2+} + (2e^{-1})$ Oxidation: n = 2Reduction: $(2e^{+} + Fe^{2+} \longrightarrow 2Fe^{+})$ $E^{0} = E^{0}_{Fe^{2+}/Fe} - E^{0}_{Co^{2+}/Cd}$ $E^0 = -0.44 - (-0.40)$ $E = E^0 - \frac{0.0257 \text{ V}}{p} \ln Q$ $E^0 = -0.04 \text{ V}$ $E = -0.04 \text{ V} - \frac{0.0257 \text{ V}}{2} \ln \frac{0.010}{0.60}$ E = 0.013

E > 0 Spontaneous



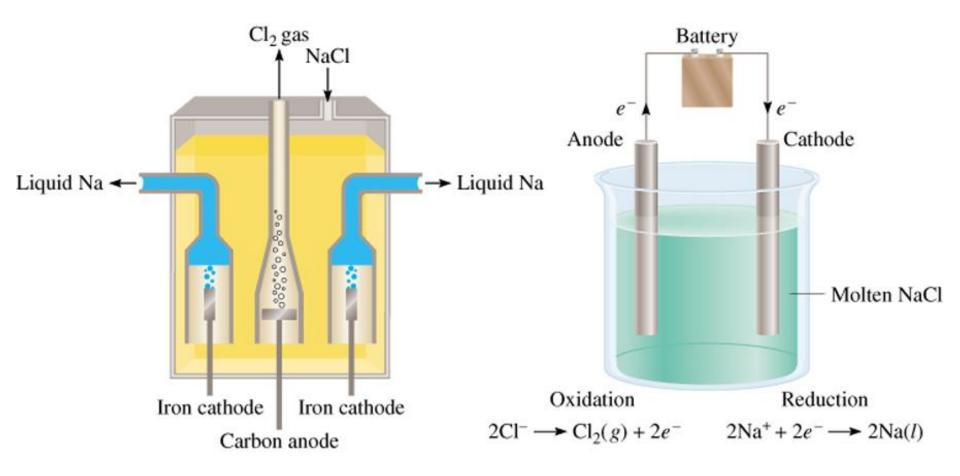


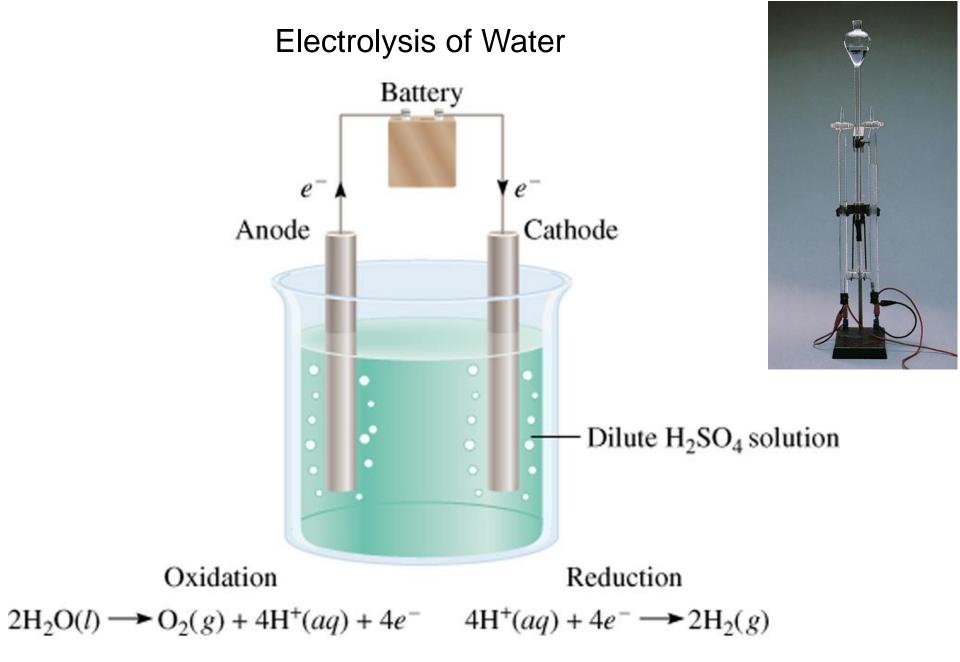
Solid State Lithium Battery



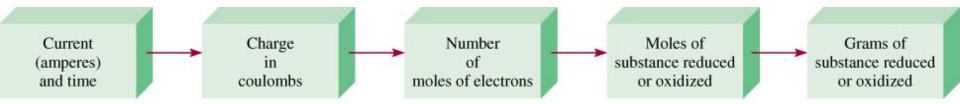
A *fuel cell* is an electrochemical cell that requires a continuous supply of reactants to keep functioning

19.7


Cathodic Protection of an Iron Storage Tank



Oxidation: $Mg(s) \rightarrow Mg^{2+}(aq) + 2e^{-}$


Reduction: $O_2(g) + 4H^+(aq) + 4e^- \rightarrow 2H_2O(l)$

Electrolysis is the process in which electrical energy is used to cause a **nonspontaneous** chemical reaction to occur.

Electrolysis and Mass Changes

charge (C) = current (A) x time (s)

1 mole e⁻ = 96,500 C

How much Ca will be produced in an electrolytic cell of molten $CaCl_2$ if a current of 0.452 A is passed through the cell for 1.5 hours?

Anode:
$$2CI^{-}(I) \longrightarrow Cl_{2}(g) + 2e^{-}$$

Cathode: $Ca^{2+}(I) \xrightarrow{1}{2e^{-}} Ca(s)$
 $Ca^{2+}(I) + 2CI^{-}(I) \longrightarrow Ca(s) + Cl_{2}(g)$

2 mole $e^{-} = 1$ mole Ca 96500 = 1mol e , So 2 moles of electrons requires = 2x 96500

Q =I x t = $0.452 \times 1.5 \times 3600 = 2440 \text{ C}$ 193000 C = 1 mole Ca 2440 C = x X = 2440 x 1 / 193000 = 0.0126 mol CaMass = $0.0126 \times 40 = 0.5 \text{ g Ca}$

Chemistry In Action: Dental Filling Discomfort

Corrosion of a Dental Filling

Gold inlay $O_2(g) + 4H^+(aq) + 4e^- \rightarrow 2H_2O(I)$ e →Sn²⁺ Sn₈Hg-**Dental filling**

 $Hg_{2}^{2+}/Ag_{2}Hg_{3}$ 0.85 V Sn²⁺/Ag₃Sn -0.05 V Sn²⁺/Ag₃Sn -0.05 V